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Abstract 

This paper reviews basic concepts for natural spoken 
language interpretation by computers.  Frame structures are 
described as suitable computer representations of semantic 
compositions. A process is introduced for obtaining basic 
semantic constituents by translating word sequences into 
basic semantic constituents and for composing constituent 
hypotheses into frame structures. Experimental results with 
the French telephone corpora are reported. They show that 
Finite State conceptual language models are useful for 
translating word hypotheses into states representing 
progressive semantic compositions and the use of 
Conditional Random Fields (CRF)  improves the accuracy of 
constituent hypothesization. 
 
Index Terms: Spoken Language Understanding, computer 
meaning representation, meaning representation languages, 
Frames, finite-state conceptual language models. 

1. Introduction 
Epistemology, the science of knowledge, considers a datum 
as basic unit. A datum can be an object, an action or an event 
in the world and can have time and space coordinates, 
multiple aspects and qualities that make it different from 
others. A datum can be represented by a word or it can be 
abstract and be represented by a concept. There may be 
relations among data.  
 
Computer epistemology deals with observable facts and their 
representation in a computer. Knowledge about the structure 
of a domain represents a datum by an object and groups 
objects into classes by their properties. Classes are organized 
into hierarchies. An object is an instance of a class. Judgment 
is expressed by predicates which describe. Predicates have 
arguments which are variables whose values have to respect 
some constraints. 
 
Natural language refers to data in the world and their relations. 
Sentences of a natural language are sequences of words. 
Groups of words have associated conceptualizations also 
called meanings which can be selected and composed to form 
the meaning of the sentence.  
 
Semantics deals with the organization of meanings and the 
relations between signs or symbols and what they denote or 
mean (Woods, 1975). Human conceptualization of the world is 
not well understood. Nevertheless, good models for this 
organization assume that basic semantic constituents expressed 
by a language are organized into conceptual structures.  
 
In (Jackendoff, 2002, p. 124) it is suggested that semantics is 
an independent generative system correlated with syntax 
through an interface. Computer semantics performs a 
conceptualization of the world using well defined elements of 

programming languages. Programming languages have their 
own syntax and semantic. The former defines legal 
programming statements, the latter specifies the operations a 
machine performs when an instruction is executed.  
Specifications are defined in terms of the procedures the 
machine has to carry out.  Semantic analysis of a computer 
program is essential for understanding the behavior of a 
program and its coherence with the design concepts and goals. 
 
Natural language interpretation by computers generate 
concept hypotheses represented in a semantic language. The 
definition of a semantic language can be based on a formal 
grammar  but has to include procedures for obtaining 
interpretations from sentences. Procedures are executed by 
computational processes belonging to an interpretation 
strategy.  
 
Computer programs conceived for interpreting natural 
language differ from the human process they model. They can 
be considered as approximate models for developing useful 
applications, interesting research experiments and 
demonstrations. Semantic representations in computers usually 
treat data as objects respecting logical adequacy in order to 
formally represent any particular interpretation of a sentence. 
Even if utterances, in general, convey meanings which may 
not have relations which can be expressed in formal logic 
(Jackendoff, 2002, p. 287), formal logic has been considered 
adequate for representing natural language semantics in many 
application domains.  
 
 In many applications, computer systems interpret natural 
language for performing actions such as a data base access and 
display of the results and  may require the use of knowledge 
which is not coded into the sentence but can be inferred from 
the system knowledge stored in long or short term memories. 
 
 It is argued in (Woods, 1975) that a specification for natural 
language semantics requires more than the transformation of a 
sentence into a representation. In fact, computer 
representations should permit, among other things,  legitimate 
conclusions to be drawn from data (Mc Carty and Hayes, 
1969). 
 
Spoken Language Understanding (SLU) is the interpretation of 
signs conveyed by a speech signal. This is a difficult task 
because meaning is mixed with other information like speaker 
identity and environment.  Natural language sentences are 
often difficult to parse and spoken messages are often 
ungrammatical. The knowledge used is often imperfect and the 
transcription of user utterances in terms of word hypotheses is 
performed by an Automatic Speech Recognition (ASR) system 
which makes errors.  
 
Some important challenges in SLU are: 
 

• meaning representation,  



• definition and representation of signs,  
• conception of relations between signs and meaning and 

between instances of meaning,  
• processes for sign extraction, generation of hypotheses 

about units of meaning and constituent composition 
into semantic structures, 

• robustness and evaluation of confidence for semantic 
hypotheses,  

• automatic learning of relations from annotated corpora,  
• collection and semantic annotation of corpora. 

 
This paper describes a process for SLU. Reviews on SLU 
research can be found in  in (De Mori, 1998, Wang 2006  and 
Mc Tear 2006). 

2. Computer representations of meaning 
using frames 

Computer representation of meaning is described by a 
Meaning Representation Language (MRL). It is preferable that  
MRL is conceived with reference to a representation model 
coherent with a theory of epistemology. As such, it should 
take into account, intension and extension, relations, 
reasoning, composition of semantic constituents into 
structures, procedures for relating them with signs.  
 
The semantic knowledge of an application is a knowledge 
base (KB). A convenient way for reasoning about semantic 
knowledge is to represent it as a set of logic formulas. 
Formulas contain variables which are bound by constants and 
may be typed. An object is built by binding all the variables 
of a formula or by composing existing objects.  
 
 Semantic compositions and decisions about composition 
actions are the result of an inference process.  Basic 
inference problem is to determine whether  FKB =  which 
means that KB entails a formula F, meaning that F is true in 
all possible variable assignments (worlds) for which KB is 
true.  
 
The formulas in a KB describe concepts and their relations 
which can be represented in a network called semantic 
network. A semantic network is made of nodes 
corresponding to entities and links corresponding to 
relations. This model combines the ability to store factual 
knowledge and to model associative connections between 
entities (Woods, 1975).  
 
The structure of semantic networks can be defined by a 
graph grammar. Computer programming classes and 
objects called frames can be defined to represent entities 
and relations in semantic networks. Frame representation 
can be derived from semantic networks They are 
computational structures (Kifer et al., 1995) and also 
cognitive structuring devices in a semantic construction 
theory (Fillmore, 1968).  
 
Part of a frame is a data structure which represents a 
concept by associating to the concept name a set of roles 
which are represented by slots. Finding values for roles 
corresponds to fill the frame slots. A slot filler can be the 
instance of another frame. There may be necessary and 
optional slots. Fillers can be obtained by attachment of 
procedures or detectors (of e.g. noun groups), inheritance, 
default.  

 
A facets can be associated to a slot. Constraints on the 
values that can fill a slot can be stored into a slot  facet. 
Constraints can be expressed by probability distributions 
on the possible filler values (Koller, 1998).  
 
Descriptions are attached to slots to specify constraints. 
Descriptions may have connectives, coreferential 
(descriptions attached to a slot are attached to another and 
vice-versa), declarative conditions.  
 
Verbs are fundamental components of natural language 
sentences. They represent actions for which different entities 
play different roles. Actions reveal how sentence phrases and 
clauses are semantically related to verbs by expressing cases 
for verbs. A case is the name of a particular role that a noun 
phrase or other component takes in the state or activity 
expressed by the verb in a sentence.  There is a case structure 
for each main verb. Attempts were made for mapping 
specific surface cases into a deep semantic representation 
expressing a sort of semantic invariant.  Many deep semantic 
representations are based on deep case n-ary relations 
between concepts as proposed by Fillmore (Fillmore, 1968). 
Deep case systems have very few cases each one 
representing a basic semantic constraint.  
 
Early frame representations were used to represent facts about 
an object with a property list. For example, a specific address 
can be represented by the following frame: 
 
{a0001 
 instance_of  address 

loc   Avignon 
area   Vaucluse 
country   France 

 street   1, avenue Pascal 
 zip   84000} 
 
Here a0001 is a handle that represents an instance of a class 
which is specified by the value of the first slot. The other slots, 
made of a property name and a value, define the property list 
of this particular instance of the class “address”. 
 
The above frame can be derived (Nilsson, 1981), after 
skolemization from the following logic formula: 
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A definition, with a similar syntax, but with a different 
semantic is provided for the address class which defines the 
structure of any address: 
 
{address 
loc TOWN 
area DEPARTMENT OR PROVINCE OR STATE  
country NATION 
street NUMBER AND NAME 
zip ORDINAL NUMBER} 
 
The syntactic analysis of a parsable  sentence can be used for 
establishing relations between syntactic structures and 



meaning. Concerning the relation between syntax and 
semantics, in  (Jackendoff, 1990),  it is observed that: 
 
• Each major syntactic constituent of a sentence maps into 

a conceptual constituent, but the inverse is not true. 
• Each conceptual constituent supports the encoding of 

units (linguistic, visual,…). 
• Many of the categories support type|token distinction. 
• Many of the categories support quantification. 
• Some realizations of conceptual categories in conceptual 

structures  can be decomposed into a function|argument 
structure. 

 
For certain types of applications,  domain-dependent semantic 
knowledge has been integrated into stochastic semantic 
grammar. A survey on  these grammars and their use can be 
found in (Wang, 2005) 

3. Conceptual language models for a 
modular SLU architecture 

Generation of hypotheses about semantic constituents and 
semantic composition are different operations in nature and 
can be performed by different techniques implemented in 
different modules. Each module can integrate different 
models in order to improve robustness. Specific conceptual 
language models can be used in ASR decoding to obtain 
constituent hypotheses directly from the signal or from word 
hypotheses. Other types of knowledge are used in shallow 
parsers(Pradhan, 2004).  In order to avoid the complexity of 
context-free and context-sensitive grammars, finite-state 
approximations of context-free grammars are proposed in 
(Pereira, 1990). Approximations of TAG grammars are 
described in (Rambow et al., 2002). A review of these 
approximations is provided in (Erdogan et al., 2005).  
 
In both cases, a generic n-gram LM can be used with specific 
stochastic finite-state machines (FSM), one for each semantic 
constituent jc .An example of LMs based on stochastic 
FSMs can be found in (Prieto et al., 1994). Stochastic 
Automata and their use for hypothesizing semantic 
constituents are proposed in (Gorin 1997, Nasr., 1999).  
Finite-state Hidden Markov Models (HMM) for SLU are 
proposed in (Pieraccini, 1991). 
 
In (Kawahara et al., 1999), an automaton extracts key 
phrases from continuous speech and converts them to 
commands for a multi-modal interaction with a virtual 
fitting room. Interpolation of generic n-gram models  
and specific concept models is performed by 
maximizing the divergence between a linear 
interpolation of the two models and the generic n-gram 
model. A greedy algorithm is proposed (Riccardi and 
Gorin, 2000). 

 
In (Drenth and Ruber, 1997), it is proposed to obtain a 
semantic interpretation of a dialog “turn” (one or more 
sentences) by extracting concept hypotheses from a word 
lattice. Each concept hypothesis is extracted with a 
conceptual semantic context-free grammar.  
 
Finite state models can be made more robust by modifying 
the original topology to take into account possible insertions, 

deletions and substitutions. Insertion of words not essential 
for characterizing a semantic constituent can be modeled by 
groups of syllables. 
 
Recent advances in research on stochastic FSM made it 
possible to generate a probabilistic lattice of conceptual 
constituent hypotheses from a probabilistic lattice of word 
hypotheses.  
 
The solution proposed in (Raymond et al., 2006) is now 
introduced. A stochastic finite-state conceptual language 
model jCLM  is  conceived for every semantic constituent 

jc . An initial ASR activity uses a generic LM, indicated as 
GENLM, for generating a graph of word hypotheses.  Let 
WG be the stochastic FSM representing the lattice of word 
hypotheses generated by an ASR system. A knowledge 
source, is built by connecting all the jCLM  in parallel as 
shown in Figure 1. Such a knowledge source is composed 
with WG leading to an automaton SEMG in which concept 
tags representing semantic constituents are added to arcs in 
WG: 
 

    
 
operator o  indicates composition.  
 

0CLM  is a generic model for sequences of words which do 
not express concepts in the application domain. 
 

 
 

Figure 1 – Composition of conceptual language models 
 
In order to obtain the concept tags representing hypotheses 
that are more likely to be expressed by the analyzed 
utterance, SEMG is projected on its outputs leading to a 
weighted Finite State Machine (FSM) with only indicators of 
beginning and end words of semantic tags. The resulting 
FSM is then made deterministic and minimized leading to an 
FSM SWG given by: 
 
SWG=OUTPROJ(SEMG)    
 
where OUTPROJ represents the operation of projection on 
the outputs followed by determinization and minimization.  
 
A sequential interpretation strategy for a dialogue service in 
the France Telecom 3000 system ( Minescu, 2007) using 
confusion networks (Hakkani-Tur, 2006) on relevant 
messages only. Results are reported in Table 1. 
 
Conditional Random Fields (CRF) have been used for 
generating hypotheses about semantic constituents for the 
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MEDIA French corpus. Results and comparisons with other 
methods obtained by (Raymond, personal communication, 
2007) on  predicate/attribute pairs using the 1 best ASR 
hypothesis are provided in Table 2. Further 10% error 
reduction have been observed by method combination. 
 

Table 1 – Interpretation results using conceptual LMs 
     Baseline (1-best)       sequential 
strategy  
Insertion rate   17.2 %   8.8 %  
Substitution rate   6.1 %   5.6 %  
Deletion rate   2.7 %   5.2 %  
Interpretation error rate (IER) 26.0 %   19.6 %  
 
 
Table 2 – Comparison of interpretation results obtained in 
the MEDIA corpus 

  concept error rate (CER) 
Conditional Random Fields        25.2 % 
Finite State Transducers         29.5 % 
Support Vector Machines         29.6 %  

4. Probabilistic logic and inference for slu 
In practical applications, SLU is part of a dialogue system 
whose objective is the execution of actions to satisfy a 
user goal.  Actions can be executed only if some pre-
conditions are asserted true and their results are 
represented by post-conditions. Preconditions for actions 
can be formulated is in formal logic. Preconditions for 
actions depend on instances of semantic structures.  
 
The system knowledge is made of general knowledge, e.g. 
knowledge about dates and time, and specific domain 
knowledge, e.g. the details of a telephone service. Let us 
call the resulting knowledge in-domain knowledge. 
 
As a dialogue progresses, part of the domain knowledge is 
instantiated. The purpose of the dialogue is to interpret the 
user beliefs and goals and represent them with the MRL. 
Eventually, system actions like accessing a data base, are 
performed to satisfy a user request. If MRL contains 
frames, then user sentences should cause the instantiation 
of some frames, the assignment of values to some frame 
roles and functions to describe them. Instantiation is based 
on what the user says, but also on what can be inferred 
about the implicit meaning of each sentence.  
 
Control strategies for interpretation determine how 
semantic structures are built, how expectations are defined 
and how knowledge structures are matched with input data 
in the presence of constraints and imprecision. 
  
There are two basic types of strategy. One is based on path 
extraction from a semantic or a frame network. The other 
adopts a constructionist approach that can use one or more 
of the following methods: inference, parsing, abduction, 
agenda-based formation and scoring of interpretation 
hypotheses called theories.  
 
In the constructionist approach, the meaning of a complex 
phrase is considered to be a function of the meanings of its 
constituent parts and the way in which these parts are 
syntactically combined. Reasoning is performed by 
programs that activate memory structures by placing 
activation markers on them.  Nodes of the structure are 

activated when the corresponding concepts are 
instantiated. Active nodes may spread activation markers 
to hypothesize or predict the activation of concepts which 
have not yet been instantiated. When two markers collide 
in the same node, a path is identified indicating a possible 
inference. Frame-activated inference is discussed in 
(Norvig 1987). 
  
Early approaches to SLU used semantic representations in 
terms of  partitioned semantic networks (Walker, 1975). 
Marker propagation was used for making predictions 
about concepts likely to appear in the natural language 
messages. Concept hypotheses were generated  by 
templates matching word and partial  parses (obtained with 
a best first parser) with semantic structures.  
 
In the Hearsay II SLU architecture (Erman et al., 1980), a 
heterarchical  architecture was used for applying rules for 
matching and inference. An agenda based control strategy 
selects a rule whose precondition matches the content of a 
blackboard. If matching is successful, then actions are 
performed which modify the content of the blackboard. 
 
The weakness of these approaches was that they did not 
contain an effective method for evaluating the confidence 
of the generated hypotheses. 
 
If instances of semantic constituents are structured into 
probabilistic frames, it is possible to have a probability 
model for the values that can fill a slot (Koller, 1998). It is 
also possible to inherit probability models from classes to 
subclasses, to use probability models in multiple instances 
and to have probability distributions representing structural 
uncertainty about a set of entities.  
 
It is shown that it possible to construct a Bayesian Network 
(BN) for a specific instance-based query  and then perform 
standard BN inference if the graph obtained from a list of 
statistical dependencies between slot values is acyclic. 
Otherwise, Markov Logic Networks (MLNs) can be used 
(Richardson, 2006).  
 
Probabilities obtained with these models can be combined 
with probabilities computed by SLU components in a way 
that is now  introduced.  
 
Let us consider an instance j,iΓ of a  frame iF .   

Let us indicate by [ ]K,j,ik,j,i1,j,ij,i ,........,,......,: γγγΓ   the set 

of roles (slots) of j,iΓ  that are instantiated and possibly filled 
by a value. 
 
The instantiation of each slot is based on a casual relation 
graphically represented as follows:  
 

kY → kW →  kC →  k,j,iγ                                                 
 

kY  is a sequence of acoustic feature vectors from which a 
word sequence kW  has been hypothersized. kW  contains 
the support for a semantic constituent  kC  expressed by a 

predicate  in first-order logic. If  kC  has been expressed in 
relation to j,iΓ , then it  becomes the slot hypothesis k,j,iγ . 



There may be other dependences between slot values, 
represented by lings in the following feature: 
 
Each slot hypothesis can be evaluated by the following 
probability: 
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since [ ] 1CP k,j,ik =γ   

The ratio 
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different language models (LMs) a generic LM for the 
denominator and an LM estimated on dialog turns expressing  

kC  and a relation )(R k,j,iγ  to an instance of iF . Notice that 

kC  is hypothesized in a dialog turn using a specific concept 

LM and [ ])(R,CWP k,j,ikk γ  could also be approximated by 

[ ])CWP kk  obtained directly with this concept LM. Notice 
also that if the LMs are estimated on entire turns rather than 
concept supports, the ratio of probabilities will be mostly 
determined by the n-grams of the words characterizing the 
supports, especially if unigram LMs are considered. The LM 
used for computing the numerator can also be obtained by 
interpolating a generic LM with a relation specific one. 
 
As an evidence indicator for the entire instantiation j,iΓ , let 
us define the following vectors  

[ ]Kk1j,i C,........,C,......,C:C , 

[ ]Kk1j,i W,........,W,......,W:W , 

[ ]Kk1j,i Y,........,Y,......,Y:Y . Assuming also that each 
concept has a support that is somehow different from the 
supports of other concepts and assuming independence 
among supports, one gets: 
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Confidence indicators can be introduced to replace some 
probabilities. Let [ ]K,j,ik,j,i1,j,ij,i ,......,,, ϕϕϕ=Φ   be a 
vector of confidence indicators, one for each slot. In this 
case, the following computation can be performed: 

{ } { } [ ]
{ }j,i

j,ij,ij,i
j,ij,i P

PP
P

Φ

ΓΓΦ
=ΦΓ  

Vector quantization can be introduced for 
[ ]K,j,ik,j,i1,j,ij,i ,......,,, ϕϕϕ=Φ .  

 
User goals can be represented by frames.  A plan for 
achieving each goal can be represented by a sequence of 
states. If different goals are hypothesized in a dialog control 
agenda, then the set of the corresponding plans are 
represented by a finite state machine. This corresponds to 
represent by a state a cluster of  instances j,ij,ij,i W,C,Γ  
corresponding to successive slot filling of a frame instance. 

 
As different states can be reached with different 
probabilities, a set of states can be active at a turn k of a 
dialogue A system was proposed in (Damnati, 2007) which 
interprets a dialogue turn message in two phases. In the first 
phase, a word-to-constituent transducer translates a word 
lattice into a constituent lattice. In the second phase, a set of  
precondition-action  rules encoded as a transducer transforms 
concept hypotheses into state transitions. A lattice of words 
is thus translated into a set of states with attached 
probabilities p(S|Y) where S is a dialogue state and Y is the 
acoustic description of a spoken message. 
 
The results reported in Table 3 are obtained with system 
3000 data, using this approach (strategy 2) and are compared 
with the results obtained with a pure sequential solution 
(strategy1)  consisting in taking the 1-best word sequence 
and mapping it into the 1-best concept sequence. The 
abbreviations are defined in tables 1 and 2, WER stays for 
Word Error rate.  
 
Table 3 – Performance on goal  detection using a two 
different strategies  

 WER   IER 
strategy 1  40.1  15.0 
strategy 2  38.2  14.5 
 

5. Conclusions 
A modular SLU architecture has been introduced. It uses 
CRFs, classifiers and stochastic FSMs, which are 
approximations of more complex grammars, for generating 
semantic constituent hypotheses and  probabilistic logic for 
performing semantic compositions. 
Annotating corpora for these tasks is time consuming 
suggesting that it is suitable to use a combination of 
knowledge acquired by a machine learning procedure and  
human knowledge (Riccardi, 2005).  Finding the best 
combination of these approaches is still a research issue. 
Other challenging problems concern the use of probabilistic 
logic, the introduction of suitable confidence indicators (as in 
Sarikaya, 2005), the design of interpretation strategies and 
their integration with dialog management. 
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