VOICE SEARCH ON MOBILE DEVICES

Geoffrey Zweig

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- Why is it important?
- The Competitive Landscape
- Basic Technology
- Advancing the State-of-the-Art
- Next generation Applications

What is Mobile Voice Search?

- Getting information when you are on-the-go
- Business-information
 - Phone numbers
 - Addresses
 - Ratings
 - Hours
- Maps & Directions
- Entertainment
 - Movie showtimes
 - Restaurant recommendations

Live Search for Windows Mobile

Microsoft Research ---- Lang Tech 2008

Asking for Seattle

Speak | Cancel

Stop Cancel

Confirming the Location

4

Speak | Cancel

Now we're in Seattle

Microsoft Research ---- Lang Tech 2008

Asking for Vietnamese Restaurants

Finding a Vietnamese Restaurant

The Details

Let's Get Directions

Starting from 8350 159th PL NE Remond, WA

Specifying a Starting Point

Speak Cancel

Speak Cancel

And Now we can Go!

You can even check the traffic

What People Ask For — By Type

Frequent Requests

Businesses		Cities		
Pizza	(1.5%)	Dallax TX	(0.80%)	
Best Buy		Seattle WA		
Starbucks		Chicago IL		
Movies		Redmond WA		
McDonald's		Los Angeles CA		
Wal-Mart		Orlando FL		
Mexican Restaurant		Miami FL		
Pizza Hut		Bellevue WA		
Target		San Diego CA		
Restaurants	(0.73%)	New York, NY	(0.47%)	
Perplexity = 8514		Perplexity = 4741		

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- □ Why is it important?
- The Competitive Landscape
- Basic Technology
- Advancing the State-of-the-Art
- Next generation Applications

Skyrocketing Cellphone Use

It's a Global Market

Number of Cellphones: ~2.2B in 2005

Potentially Big Revenues

Quarterly Internet Ad Revenues

Source: PwC/IAB Internet Advertising Revenue Report (www.iab.net)

Will mobile search be like internet search?

Microsoft Research ---- Lang Tech 2008

Monetization

- □ Free 411 services create modest revenue streams
- But multimodal has advantages:
 - You are looking at a screen
 - You can be sms'd and that sticks around
 - Voice provides demographic clues not present in web search gender, race, age, education
- Many possibilities
 - Standard search-specific advertising
 - You say "Zales Jewelers" system suggests "Tiffany's"
 - Demographically targeted ads
 - Men get different results from women
 - Batched ads sent to email account provided at registration

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- Why is it important?
- □ The Competitive Landscape
- Basic Technology
- State-of-the-Art
- Next generation Applications

Competitive Landscape: Basic Search

- □ Live Search for Windows Mobile
 - http://wls.live.com from your phone
 - Businesses, directions, maps, traffic, movies, gas
 - Windows Mobile phones
- Tellme by Mobile
 - http://www.tellme.com/products/TellmeByMobile
 - Businesses, directions, maps
 - Java phones
- V-enable
 - http://www.v-enable.com/directory assistance.html
 - Businesses, directions, maps, weather
 - Demo only not currently available

Competitive Landscape: Beyond Search

- Vlingo
 - http://vlingo.com/
 - Businesses, directions, maps, music downloads
 - sms by voice
 - Java phones
- Nuance Voice Control
 - http://www.nuance.com/voicecontrol/
 - Businesses, directions, maps, weather, stocks, sports, movies, web search
 - Send emails, update calendar, go to web pages
 - Blackberry, Treo, Windows Mobile phones

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- Why is it important? -- Trends in Cellphone use
- The Competitive Landscape
- □ Basic Technology
- Advancing the State-of-the-Art
- Next generation Applications

Client-Server Architecture

Typical Grammar Setup

Business n-gram LMs Local 1 National Local 2 Local 600

Sample Performance Levels

	1-best	N-best	N-best depth	Inter- annotator agreement
Overall	42%	47	3.6	67%

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- Why is it important? -- Trends in Cellphone use
- The Competitive Landscape
- Basic Technology
- □ Advancing the State-of-the-Art
- Next generation Applications

Click-Driven Automated Feedback

Automated Feedback Methods

- Data addition
 - What people click on & associated audio
 - Text searches from web
- Discriminative LM training
 - Adjust LM to maximize posterior probability of correct words
 - Need to know competitors from nbest lists
- Translation-based data generalization
- Maximum likelihood database cleaning
 - Learn error model of the mistakes people make when entering data
 - Recover the likeliest intended entries
- Adaptive N-best postprocessing
 - Remove what history shows is obviously stupid
 - Reorder and augment the rest based on further analysis
- Personalization
 - Per-person / user-profile grammars
 - Per-person speaker-adaptive transforms

Sample Click Data

Entries that frequently co-occur

Clicked	Competitor
McDonald's	Mc Donald
Coffee	Coffey
Mexican Restaurant	Mexican Restrant
Coffee	Сору
Mexican Food	Mexican Foods
Starbucks	Star Box
Starbucks	Starbuck's
Sex	6
Burger King	13

Discriminative LM Training (Xiao Li)

- Idea
 - Increase n-gram probabilities of the true hypothesis
 - Decrease n-gram probabilities of confusable competitors
- The LM is estimated to maximize p(W|O)
- Leveraging click data
 - View clicked item as "truth"
 - View n-best alternatives as "competitors"

N-best alternatives

- 1. Maine Home
- Maine School
- 3. Maine Car
- 4. Maine
- Maine Heart
- 6. Maine Mall
- 7. Maine Homes
- 8. Mayo
- Maine Golf
- 10. Maine Home Care

Rescoring Results

Experiments:

- Rescore n-best alternatives using the baseline LM and discriminatively trained LM
- Inspect if the rescored one-best is the user clicked item

One-best Acc	Train Set	Dev set	Test set
# utterances	1 <i>5</i> 0K	1.3K	1.4K
Baseline	71.1%	71.5%	70.5%
Discriminative Training	-	74.8%	72.7%

Fraction of time the clicked item is at the top of the n-best.

Translation LM (Xiao Li, ICASSP-08)

□ Goal:

- "Translate" listing forms to query forms
- Use translated query forms to augment the training data for LM estimation.

Example

listing Kung Ho Cuisine Of China can have

- "Kung Ho Chinese Restaurant"
- "Kung Ho Restaurant"
- "Kung Ho"

Recognition Results

- Experiments
 - Test set: 3K directory-assistance utterances
 - Different LM training sets:

Sentence accuracy	One-best	N-best
Listings	38.6%	48.3%
Listings + transcription	41.5%	51.4%
Listings + transcription + translation	43.1%	52.5%

Maximum Likelihood Database Recovery

Wi: intended words (unknown, e.g. "Starbucks" or "Al's Quick Mart")
Wc: Corrupted words in data (observed, e.g. "Starbuck's" or "Al's Kwik Mart")
Want to find the likeliest intended word sequence

$$\arg\max_{w_i} P(w_i \mid w_c) = \arg\max_{w_i} \frac{P(w_i)P(w_c \mid w_i)}{P(w_c)}$$

$$= \arg\max_{w_i} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \max_{w_i} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \max_{w_i} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \max_{w_i} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \min_{c \mid e \mid d} P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \min_{w_i} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} \min_{w_i} P(w_i)P(w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_c \mid w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)P(w_i)$$

$$= \lim_{c \mid e \mid d} P(w_i)$$

$$= \lim_{c \mid e \mid d$$

Maximum Likelihood Database Recovery++ (G. Zweig, ICASSP 2008)

W: intended words (unknown)

l_i: intended letters (unknown)

l_c: corrupted letters (observed)

Want to find the likeliest word and letter sequence underlying the observations

$$\arg\max_{w,\,li} P(w,li\,|\,l_c) = \arg\max_{w,\,li} \frac{P(w,li)P(l_c\,|\,w,li)}{P(l_c)}$$

$$= \arg\max_{w,\,li} P(w)P(li\,|\,w)P(l_c\,|\,w,li)$$

$$= \arg\max_{w,\,li} P(w)P(li\,|\,w)P(l_c\,|\,li)$$

$$= \lim_{l \to \infty} \lim_{w \to \infty$$

Microsoft Research ---- Lang Tech 2008

Database Recovery Steps

- Learn error model by aligning letters of click-pairs
 - Coffey vs. Coffee
 - Starbuck's vs Starbucks
- Learn language model from current version of database
- Letter-to-word from a list of in-language words
- Run database letters through transductive aparatus to recover words

Feedback-Driven N-best Postprocessing (Dan Bohus)

Approach

Click prediction model

$$P(Click|f) = \frac{e^{\overline{\alpha} \cdot \overline{f}}}{1 + e^{\overline{\alpha} \cdot \overline{f}}}$$

- Features
 - Recognized words
 - Historical click-through rates
 - Intra n-best comparisons
 - User-specific features
 - Text query log features

Preliminary Results

23% improvement in average position of clicked item

Outline

- What is Mobile Voice search?
 - An example: Live Search for Windows Mobile
- Why is it important?
- The Competitive Landscape
- The Technology
- Advancing the State-of-the-Art
- Next generation Applications

Next Generation Applications

- Better integration with information sources
 - Unstructured information
 - The web "www dot langtech dot org"
 - New kinds of structured information
 - Product information
 - Movie reviews
 - Nutrition information "Do apples have vitamin D?"
- Access to private information
 - "Show me my benefits information on the company website"
 - "Show me the email from Langtech about the banquet"
- Two-way interaction
 - Rating products and businesses

VoiceRate — A Sample NextGen Application

VoiceRate Benefits

User Benefits:

- Facilitates informed impulse purchases
- Let's you provide immediate feedback
- Access to ratings for:
 - 1.1M products (electronics, toys, books, DVDs, etc.)
 - 270k restaurants (local businesses) in 1600 metros
 - 3k national businesses (airlines, car rental companies, etc.)

□ Researcher Benefits:

- Fertile test-bed for many technologies
 - Understanding verbal reviews
 - Summarizing across multiple reviews
 - Making pair-wise comparisons
 - Explaining why people like X better than Y
 - Core ASR
- Data collection

Provider Benefits

- Sales of Targeted ads
 - Ask about Toro Snowblower; Snapper Snowblowers pays to suggest their product
 - Determine caller demographics by voice tailor ads
- Sale of market research services
 - When a person leaves a review
 - For example, if you call to review a lawnmower, Honda can pay to ask "Did the mower cut the grass evenly?"
 - When a person gets a review
 - If I call and ask about the Toro Power Curve Snow-blower, Toro can pay to ask: "To help determine if there are any better products, how important is noise to you in a snowblower?"
- Location-specific ads
 - If you are in a Target store and call about X, that Target can to offer you a deal.

Conclusions

- Mobile Voice Search is a key technology area
 - Impact on a large fraction of the world's population
 - Global in scope
- Multi-modal interfaces are key
 - Speech recognition is necessary because data entry just too hard otherwise
- Click-driven feedback will drive system improvements
- Current applications are just scratching the surface

Thanks to VoiceSearch Collaborators!

- □ Xiao Li
- □ Dan Bohus
- Patrick Nguyen
- Julian Odell
- Oliver Scholz
- Alex Acero